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History overview: stochastic conditional independence I

Already in the 1950s, Loève in his book on probability theory defined the
concept of conditional independence (CI) is terms of σ-algebras.

M. Loève (1995). Probability Theory, Foundations, Random Processes.
D. van Nostrand, Toronto.

Phil Dawid was probably the first statistician who explicitly formulated
certain basic formal properties of stochastic CI.

A. P. Dawid (1979). Conditional independence in statistical theory. Journal
of the Royal Statistical Society B 41, 1-31.

He observed that several statistical concepts, e.g. the one of a sufficient
statistics, can equivalently be defined in terms of generalized CI.

This observation allows one to derive many results on those statistical concepts in

an elegant way, using the formal properties of CI.
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History overview: stochastic conditional independence II

These basic formal properties of stochastic CI were independently
formulated in the context of philosophical logic by Spohn, who was
interested in the interpretation of CI and its relation to causality.

W. Spohn (1980). Stochastic independence, causal independence and
shieldability. Journal of Philosophical Logic 9 (1), 73-99.

The same properties, this time formulated in terms of σ-algebras, were
also explored by statistician Mouchart and probabilist Rolin.

M. Mouchart and J.-M. Rolin (1984). A note on conditional independence
with statistical applications. Statistica 44 (4), 557-584.

Allegedly, the conditional independence symbol ⊥⊥ was proposed by
Dawid and Mouchart during their joint discussion in the end of the 1970s.
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History overview: stochastic conditional independence III

The significance of the concept of CI for probabilistic reasoning was later
recognized by Pearl and Paz, who observed that the above basic formal
properties of CI are also valid for certain ternary separation relations
induced by undirected graphs.

J. Pearl and A. Paz (1987). Graphoids, graph-based logic for reasoning about
relevance relations. In Advances in Artificial Intelligence II. North-Holland,
Amsterdam, 357-363.

This led them to the idea describe such formal ternary relations by graphs
and introduced an abstract concept of a semi-graphoid. Even more
abstract concept of a separoid was later suggested by Dawid.

A. P. Dawid (2001). Separoids: a mathematical framework for conditional
independence and irrelevance. Annals of Mathematics and Artificial
Intelligence 32 (1/4), 335-372.
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History overview: stochastic conditional independence IV

Pearl and Paz (1987) also raised a conjecture that semi-graphoids coincide
with stochastic CI structures, which was later refuted.

M. Studený (1992). Conditional independence relations have no finite
complete characterization. In Transactions of 11th Prague Conference B.
Kluwer, Dordrecht, 377-396.

A lot of effort and time was devoted to the task to characterize all possible
CI structures induced by four discrete random variables. The final solution
to that problem was achieved by Matúš.

F. Matúš (1999). Conditional independences among four random variables
III., final conclusion. Combinatorics, Probability and Computing 8 (3),
269-276.

P. Šimeček (2007). Independence models (in Czech). PhD thesis, Charles
University, Prague.

Šimeček computed that the number of these structures is 18478 and they

decompose into 1098 types.
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History overview: graphical description

The traditional way of (sketchy) description of (stochastic) CI structures
was to use graphs whose nodes correspond to random variables.

This idea had appeared in statistics earlier than Pearl and Paz suggested that in

the context of computer science.

One can distinguish two basic trends, namely

using undirected graphs, and

using directed (acyclic) graphs.

The theoretical breakthrough leading to (graphical) probabilistic expert
systems was the local computation method.

S. L. Lauritzen and D. J. Spiegelhalter (1988). Local computations with
probabilities on graphical structures and their application to expert systems.
Journal of the Royal Statistical Society B 50 (2), 157-224.
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Overview: non-probabilistic conditional independence I

Nevertheless, the probability theory and statistics is not the only field in
which the concept of CI was introduced and examined.

An analogous concept of embedded multivalued dependency (EMVD) was
studied in theory of relational databases. Sagiv and Walecka showed that
there is no finite axiomatic characterization of EMVD structures.

Y. Sagiv and S. F. Walecka (1982). Subset dependencies and completeness
result for a subclass of embedded multivalued dependencies. Journal of
Association for Computing Machinery 29 (1), 103-117.

Shenoy observed that one can introduce the concept of CI within various
calculi for dealing with knowledge and uncertainty in artificial intelligence.

P. P. Shenoy (1994). Conditional independence in valuation-based systems.
International Journal of Approximate Reasoning 10 (3), 203-234.
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Overview: non-probabilistic conditional independence II

Shenoy’s work gave inspiration to several papers on formal properties of CI in

various calculi for dealing with knowledge and uncertainty in artificial intelligence.

For example, Vejnarová compared formal properties of CI concepts arising
in the frame of possibility theory.

J. Vejnarová (2000). Conditional independence in possibility theory.
International Journal of Uncertainty and Fuzziness Knowledge-Based
Systems 12, 253-269.

As concerns Spohn’s calculus of ordinal conditional functions, it was
shown that there is no finite axiomatization of CI structures arising in the
context of natural conditional functions.

M. Studený (1995). Conditional independence and natural conditional
functions. International Journal of Approximate Reasoning 12 (1), 43-68.

M. Studený (Prague) CI concept in uncertainty calculi September 22, 2016 9 / 46



Overview: non-probabilistic conditional independence III

At least two concepts of CI were proposed in the context of the
Dempster-Shafer theory of evidence.

B. Ben Yaghlane, P. Smets, K. Mellouli (2002). Belief function independence
II. International Journal of Approximate Reasoning 31, 31-75.

R. Jiroušek and J. Vejnarová (2011). Compositional models and conditional
independence in evidence theory. International Journal of Approximate
Reasoning 52, 316-334.

Various concepts of conditional irrelevance have also been introduced and
their formal properties were examined within the theory of imprecise
probabilities; let us mention the concept of epistemic irrelevance.

F. G. Cozman and P. Walley (2005). Graphoid properties of epistemic
irrelevance and independence. Annals of Mathematics and Artificial
Intelligence 45 (1/2), 173-195.
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Basic concepts: discrete probability distribution

Definition (probability density)

A discrete probability measure over (a finite set) N is defined as follows:

(i) For every i ∈ N a non-empty finite set Xi is given, which is the
individual sample space for the variable i . This defines a joint sample
space, which is the Cartesian product XN :=

∏
i∈N Xi .

(iii) A probability measure P on XN is given; it is determined by its
probability density, which is a function p : XN → [0, 1] such that∑

x∈XN
p(x) = 1. Then P(A) =

∑
x∈A p(x) for any A ⊆ XN .

Some conventions:
Given A ⊆ N, any list of elements [xi ]i∈A such that xi ∈ Xi for i ∈ A will be
named a configuration for A. XA is the set of configurations for A.

Given disjoint A,B ⊆ N, the concatenation AB is a shorthand for union A ∪ B.

In case A ⊆ B and b ∈ XB the symbol bA will denote the restriction of the
configuration b for A, that is, the restricted list. (= a marginal configuration)

Given i ∈ N the symbol i will be used as an abbreviation for the singleton {i}.
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Example: a density of a probability distribution

N = {a, b, c} and Xi = {0, 1} for any i ∈ N.

Thus, one has 8 joint configurations: |XN | = 8.

We put p(0, 0, 0) = 0, p(0, 0, 1) = 1/4, p(0, 1, 0) = 1/2, p(0, 1, 1) = 0,

p(1, 0, 0) = 0, p(1, 0, 1) = 1/4, p(1, 1, 0) = 0, p(1, 1, 1) = 0.

Here, an implicit order of variables is a (= the first one), b and c .

-

6

�
�
�	

��

��

��

s
s s1

4
1
4

1
2

a

c

b

c = 1

c = 0

The function p is indeed a density (of a probability distribution).
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Basic concepts: marginal density in the discrete case

Definition (marginal density)

Given A ⊆ N and a discrete probability measure P over N, the marginal
measure PA is defined by its marginal density pA : XA → [0, 1], given by
the formula

pA(a) :=
∑

c∈XN\A
p(a, c) for a ∈ XA,

where p is the (joint) density of the probability measure P, whose
argument (a, c) is the joint configuration of a ∈ XA and c ∈ XN\A.
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Example: marginal density

N = {a, b, c} and Xi = {0, 1} for any i ∈ N.

Take p(0, 0, 0) = 0, p(0, 0, 1) = 1/4, p(0, 1, 0) = 1/2, p(0, 1, 1) = 0,

p(1, 0, 0) = 0, p(1, 0, 1) = 1/4, p(1, 1, 0) = 0, p(1, 1, 1) = 0.

For A = {a, b}, pA(0, 0) = p(0, 0, 0) + p(0, 0, 1) = 1/4.
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Basic concepts: conditional density in the discrete case

Definition (conditional density)

Given disjoint sets A,C ⊆ N of variables and a discrete probability
measure P over N, the conditional density for A given C is a (partial)
function pA|C : XA × XC → [0, 1]:

pA|C (a | c) :=
pAC (a, c)

pC (c)
for a ∈ XA and c ∈ XC with pC (c) > 0.

Note that the ratio determining the conditional density pA|C is only
defined for conditioning positive configurations c ∈ XC with pC (c) > 0!

However, sometimes, in probabilistic reasoning, a computational
convention is accepted that pA|C (a | c) = 0 for any zero configuration
c ∈ XC with pC (c) = 0 and a ∈ XA.

It is clear that pA|C (∗|∗) only depends of the marginal density pAC .
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Example: conditional density

N = {a, b, c} and Xi = {0, 1} for any i ∈ N. The same joint density.

For A = {a, b}, C = {c}, pA|C (0, 0 | 1) = p(0,0,1)
pC (1) = 1/4

1/2 = 1/2.
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Observe that pC |A(∗ | 1, 1) is not defined unless a convention is accepted.
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Conditional independence in the discrete case

There are several equivalent definitions of stochastic CI in the discrete
case. The next one avoids using the concept of a conditional density.

Definition (CI in terms of marginal densities)

Let A,B,C ⊆ N be pairwise disjoint sets of variables and P a discrete
probability measure over N given by a joint density p.

We say that A and B are conditionally independent given C with respect
to P and write A ⊥⊥ B |C [P] if

∀ x ∈ XN pC (xC ) · pABC (xABC ) = pAC (xAC ) · pBC (xBC ) .

Thus, it follows from this definition that the validity of A ⊥⊥ B |C [P] only
depends on the marginal density pABC .

Note that in case C = ∅ the definition of A ⊥⊥ B | ∅ [P] reduces to

pAB(xAB) = pA(xA) · pB(xB) for any x ∈ XN (= stochastic independence).
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Example: conditional independence
The definition of CI in terms of marginal densities is awkward to verify directly

because it requires to compute marginal densities and to verify |XABC | equalities.

N = {a, b, c} and Xi = {0, 1} for any i ∈ N. The same joint density.
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To verify/disprove a ⊥⊥ b | c one needs to check 8 equalities.

For x = (0, 0, 0) check pc(0) · p(0, 0, 0)
?
= pac(0, 0) · pbc(0, 0),

which is true: 1/2 · 0 = pc(0) · p(0, 0, 0) = pac(0, 0) · pbc(0, 0) = 1/2 · 0 ,

x = (0, 0, 1) : 1
8 = 1

2 ·
1
4 = pc(1)·p(0, 0, 1) = pac(0, 1)·pbc(0, 1) = 1

4 ·
1
2 = 1

8 .

Computation for remaining joint configurations confirms a ⊥⊥ b | c [P].
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Conditional independence in terms of conditional densities

The concept of CI is typically introduced in terms of conditional densities.

Observation (CI in terms of conditional densities)

An elegant symmetric description of A ⊥⊥ B |C [P] in these terms is

∀ x ∈ XABC such that pC (xC ) > 0 one has

pAB|C (xAB |xC ) = pA|C (xA|xC ) · pB|C (xB |xC ) .

However, the most popular equivalent definition in these terms is the next
asymmetric one, which basically says that the conditional distribution
PA|BC does not depend on the variables in B:

∀ x ∈ XABC with pBC (xBC ) > 0 pA|BC (xA|xBC ) = pA|C (xA|xC ) . (1)

Note that because pBC (xBC ) > 0 ⇒ pC (xC ) > 0 the RHS in (1) is also defined.
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Example: CI in terms of conditional densities

N = {a, b, c} and Xi = {0, 1} for any i ∈ N. The same joint density.

pa|bc
?
= pa|c
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Thus, we observe that both pa|bc(∗ | 0, 1) = 1
2 · δ0 + 1

2 · δ1 = pa|c(∗ | 1) and
pa|bc(∗ | 1, 0) = δ0 = pa|c(∗ | 0). Hence, a ⊥⊥ b | c [P].
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Irrelevance interpretation of stochastic CI

The definitions of CI in terms of conditionals offer its natural interpretation.

The asymmetric definition saying that pA|BC=pA|C was interpreted in the
context of probabilistic reasoning as the requirement of conditional
irrelevance of A on B given C , namely, that values in A depend on the
values in B only through the values in C .

This is close to a traditional interpretation of the condition pA|BC=pA|C in
the theory of Markov processes (so-called Markovian condition), which is
that the future A does depend on the past B only through the present C .

The symmetric condition pAB|C (∗ | xC ) = pA|C (∗ | xC ) · pB|C (∗ | xC ) for any
positive conditioning configuration xC ∈ XC leads directly to the next
interpretation: once the configuration for C is fixed/known then the
variables is A and B do not influence each other.
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Conditional independence as exchangeability condition

In the case of a discrete probability density, the number of equalities to be

checked in order to verify a CI statement can be considerably reduced. One can

even avoid computing marginals and conditionals.

An elegant combinatorial characterization of CI in terms of joint densities,
already mentioned by Moussouris in the 1970s, can be interpreted as a
cross-exchange condition for configurations.

J. Moussouris (1974). Gibbs and Markov properties over undirected graphs.
Journal of Statistical Physics 10 (1), 11-31.

Observation (CI in the form cross-exchange condition)

Let A,B,C ⊆ N be pairwise disjoint and P a discrete probability measure
over N given by a joint density p. Then A ⊥⊥ B |C [P] if an only if

∀ a, ā ∈ XA, ∀b, b̄ ∈ XB , ∀ c ∈ XC one has

pABC (a,b, c) · pABC (ā, b̄, c) = pABC (a, b̄, c) · pABC (ā,b, c) .
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Example: CI as the cross-exchange condition

N = {a, b, c} and Xi = {0, 1} for any i ∈ N. The same joint density.
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Only 2 equalities need to be checked for a ⊥⊥ b | c using cross-exchange.

For c = 1, {a, ā} = {0, 1} and {b, b̄} = {0, 1} it means checking

p(0, 0, 1) · p(1, 1, 1)
?
= p(0, 1, 1) · p(1, 0, 1), which is true:

p(0, 0, 1) · p(1, 1, 1) = 1
4 · 0 = 0 = 0 · 1

4 = p(0, 1, 1) · p(1, 0, 1).

For c = 0 one has p(0, 0, 0) · p(1, 1, 0) = 0 = p(0, 1, 0) · p(1, 0, 0).
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Conditional independence and factorization

Another characterization of stochastic CI is in term of factorization.

Observation (CI in the form of a factorization condition)

Let A,B,C ⊆ N be pairwise disjoint and P a discrete probability measure
over N given by a joint density p. Then A ⊥⊥ B |C [P] if an only if

∃ f AC : XAC → R, ∃ gBC : XBC → R such that

∀ x ∈ XABC pABC (x) = f AC (xAC ) · gBC (xBC ) ,

where the functions f AC and gAC are called potentials.

The meaning of this factorization condition is as follows: to record a
3-dimensional density in the memory of a computer it is enough to record
only two 2-dimensional potentials, which reduced the memory demands.

This leads to the second important interpretation of stochastic CI in terms
of decomposition of a many-dimensional object into less-dimensional ones.
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Example: CI interpreted as factorization

N = {a, b, c} and Xi = {0, 1} for any i ∈ N. The same joint density.

pabc
?
= f ac · gbc
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One can choose the following potentials:

f ac(0, 0) = f ac(0, 1) = f ac(1, 1) = 1 and f ac(1, 0) = 0,

gbc(0, 1) = 1
4 , gbc(1, 0) = 1

2 , gbc(0, 0) = gbc(1, 1) = 0.
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Abstraction: decomposition interpretation of CI

If A ⊥⊥ B |C [P], the factors in the multiplicative decomposition
pABC = f AC · gBC need not be unique. On the other hand, a unique
standard decomposition into marginal densities exists:

pABC (xABC ) = pAC (xAC ) · 1

pC (xC )
· pBC (xBC )︸ ︷︷ ︸

pB|C (xB |xC )

for any x ∈ XN ,

where a convention 1
0 := 0 is accepted.

This standard decomposition is usually written as pABC = pAC × pB|C ,

which emphasizes 3 main operations used to introduce the concept of CI:

marginalization (p 7→ pAC ),

conditioning (p 7→ pB|C ),

aggregation operation (the multiplication × is this case).

Analogously, CI can be introduced beyond the probabilistic framework.
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Abstraction: towards CI in various uncertainty calculi

This is basically the way to introduce the concept of CI in Shenoy’s
abstract valuation-based systems involving many frames for knowledge
representation occurring in artificial intelligence.

A similar idea was utilized by Jiroušek in his compositional models.

P. P. Shenoy (1994). Conditional independence in valuation-based systems.
International Journal of Approximate Reasoning 10 (3), 203-234.

R. Jiroušek (1997). Composition of probability measures on finite spaces. In
Proceedings of UAI, Morgan Kaufmann, San Francisco, 274-281.

In fact, most of the papers on CI within alternative uncertainty calculi
introduce the concept of CI by defining these three operations, namely
marginalization, conditioning and some kind of aggregation operation.

Note that conditioning and aggregation is often gathered in one
composition operation.
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Basic formal properties of stochastic CI

The next formal properties of CI have been emphasized by many authors.

Observation (formal properties of CI)

Let P be a probability measure over N. Then the following conditions hold
for (pairwise disjoint) A,B,C ,D ⊆ N:

∅ ⊥⊥ B |C [P]

A ⊥⊥ B |C [P] ⇒ B ⊥⊥ A |C [P],

A ⊥⊥ BD |C [P] ⇒ A ⊥⊥ D |C [P],

A ⊥⊥ BD |C [P] ⇒ A ⊥⊥ B |DC [P],

A ⊥⊥ D |C [P] & A ⊥⊥ B |DC [P] ⇒ A ⊥⊥ BD |C [P].

Moreover, if P has a strictly positive density then

A ⊥⊥ B |DC [P] & A ⊥⊥ D |BC [P] ⇒ A ⊥⊥ BD |C [P] .

Note that these formal properties are valid far beyond the discrete case.
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Formal independence model

These fundamental properties of CI are also valid for certain ternary
separation relations induced by graphs, which motivated Pearl and Paz to
introduce an abstract concept of a semi-graphoid.

J. Pearl and A. Paz (1987). Graphoids, graph-based logic for reasoning about
relevance relations. In Advances in Artificial Intelligence II. North-Holland,
Amsterdam, 357-363.

Semi-graphoids are formal independence models in the following sense.

Definition (formal independence model)

A formal independence model over N is a set M of ordered triplets
〈A,B|C 〉 of pairwise disjoint subsets of N, whose elements are interpreted
as independence statements.
We write A ⊥⊥ B |C [M] to indicate that 〈A,B|C 〉 ∈ M is interpreted as
an independence statement.
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The concept of a semi-graphoid

Definition (disjoint semi-graphoid)

A (disjoint) semi-graphoid over N is a formal independence model M over
N satisfying the following conditions/axioms:

∅ ⊥⊥ B |C [M] triviality,
A ⊥⊥ B |C [M] ⇒ B ⊥⊥ A |C [M] symmetry,
A ⊥⊥ BD |C [M] ⇒ A ⊥⊥ D |C [M] decomposition,
A ⊥⊥ BD |C [M] ⇒ A ⊥⊥ B |DC [M] weak union,
A ⊥⊥ D |C [M] & A ⊥⊥ B |DC [M] ⇒ A ⊥⊥ BD |C [M] contraction.

A semi-graphoid M will be called a graphoid (over N) if it satisfies

A ⊥⊥ B |DC [M] & A ⊥⊥ D |BC [M] ⇒ A ⊥⊥ BD |C [M] intersection.

Thus, the observation about basic properties of stochastic CI can be
formulated as a statement that MP := { 〈A,B|C 〉 : A ⊥⊥ B |C [P] } is a
semi-graphoid for any (discrete) probability measure P over N.
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Remarks on semi-graphoids

Pearl and Paz considered the semi-graphoid implications to be natural
properties of conditional irrelevance relations. They indeed occur in
various areas (see later examples).

Introducing a semi-graphoid in the form of an abstract mathematical
concept inspired several theoretical papers on this topic.

The methods for efficient representing (disjoint) semi-graphoids in the
memory of a computer have been proposed using so-called elementary CI
statements, which are statements of the form a ⊥⊥ b |C .

Also, natural dominance ordering between triplets 〈A,B|C 〉 leads to a dual
concept of a dominant CI statement and to the research on
(implementing) the semi-graphoid/graphoid closure. This further led to
some papers on complexity of semi-graphoid inference.

Morton (2009) in his thesis even revealed surprising occurrence of
semi-graphoids in the context of polyhedral geometry.

M. Studený (Prague) CI concept in uncertainty calculi September 22, 2016 31 / 46



The concept of a separoid

Some authors studied general semi-graphoids over N, in which case the
requirement of pairwise disjointness of sets A, B and C is omitted. This
allows one to model functional dependency relations.

Dawid took very abstract point of view and introduced the next notion.

Definition (separoid)

Let S be a joint semi-lattice, that is, a partially ordered set in which every
two elements a, b have a supremum (= joint), denoted by a ∨ b. A set of
ordered triplets a ⊥⊥ b | c of elements of S will be named a separoid if

b ∨ c = c ⇒ a ⊥⊥ b | c ,

a ⊥⊥ b | c ⇔ b ⊥⊥ a | c ,

a ⊥⊥ b ∨ d | c ⇔ { a ⊥⊥ d | c & a ⊥⊥ b | d ∨ c }.

A. P. Dawid (2001). Separoids: a mathematical framework for conditional
independence and irrelevance. Annals of Mathematics and Artificial
Intelligence 32 (1/4), 335-372.
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Examples of semi-graphoids: undirected graph

Given an undirected graph G whose set of nodes is N and a triplet
〈A,B|C 〉 of pairwise disjoint subsets of N we say that

A and B are separated by C in G and write A ⊥⊥ B |C [G ] if every path in
G from a node in A to a node in B must contain a node in C .
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one has b ⊥⊥ f | {c , d} [G ]

a ⊥⊥ e | {b, c , d} [G ]

but a 6⊥⊥ e | {b, c} [G ]

It is always a graphoid. Every such graphoid is induced by a discrete
probability distribution. Nevertheless, in case |N| = 4 one has 64 such
graphoids in comparison 18478 probabilistic semi-graphoids.

M. Studený (Prague) CI concept in uncertainty calculi September 22, 2016 33 / 46



Examples of semi-graphoids: a class of subsets

Let P(N) := {A : A ⊆ N} denote the power set of N.

Given a class T ⊆ P(N) of subsets on N and a triplet 〈A,B|C 〉 of disjoint
subsets of N we write A ⊥⊥ B |C [T ] if

∀ T ∈ T T ⊆ ABC ⇒ [ T ⊆ AC or T ⊆ BC ].

One can verify easily that it is always a graphoid.

Note that every graphical graphoid is induced by a class of sets: take the
collection of complete sets in the graph G in place of T .
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Examples of semi-graphoids: supermodular function

A set function m : P(N)→ R is called supermodular if

m(D ∪ E ) + m(D ∩ E ) ≥ m(D) + m(E ) for any D,E ⊆ N.

Given a supermodular function m : P(N)→ R and a triplet 〈A,B|C 〉 of
pairwise disjoint subsets of N we write A ⊥⊥ B |C [m] if

m(C ) + m(ABC ) = m(AC ) + m(BC ) .

This is always a semi-graphoid and semi-graphoids defined in this way are
called structural for some deeper reasons. In fact, every (discrete)
probabilistic semi-graphoid is structural.

In comparison with graphical semi-graphoids, structural semi-graphoids are
much more common. If |N| = 4 one has 22108 structural semi-graphoids
in comparison with all 26424 semi-graphoids.
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Examples of semi-graphoids: relational database

Theory of relational databases is an area of computer science, in which a concept

analogous to CI was studied even earlier than in probabilistic reasoning.

A relational database over N is simply a set of configurations over N:
D ⊆ XN ≡

∏
i∈N Xi . Operations of marginalization and combination for

relational databases:

given A ⊆ N and D ⊆ XN , put DA := {bA : b ∈ D},
given a disjoint triplet 〈A,B|C 〉 over N and databases D1 ⊆ XAC ,
D2 ⊆ XBC its combination is as follows:

D1 ./ D2 := { (a,b, c) ∈ XABC : (a, c) ∈ D1 & (b, c) ∈ D2 } .

Given a database D ⊆ XN and a triplet 〈A,B|C 〉 of disjoint subsets of N
we write A ⊥⊥ B |C [D] if DABC = DAC ./ DBC .

It is always a semi-graphoid. These semi-graphoid are analogous to
probabilistic ones, but they are different.
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Examples of semi-graphoids: ordinal conditional functions

Spohn (1988) in his epistemic-belief theory used special ordinal conditional

functions to model the state of knowledge.

Following Shenoy (1994) we call a function κ : XN → N such that
min {κ(x) : x ∈ XN} = 0 a disbelief function.

One defines a special marginalization operation: given A ⊆ N put

κA(a) := min {κ(a, c) : c ∈ XN\A } for a ∈ XA.

Given a disbelief function κ : XN → N and a triplet 〈A,B|C 〉 of disjoint
subsets of N we write A ⊥⊥ B |C [κ] if

∀ x ∈ XN κC (xC ) + κABC (xABC ) = κAC (xAC ) + κBC (xBC ) .
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Possibility theory

Possibility theory was proposed as a model for quantification of
judgements on basis of fuzzy theory.

D. Dubois and H. Prade (1988). Possibility Theory, an Approach to
Computerized Processing of Uncertainty. Plenum Press, New York.

Definition (possibility distribution)

Possibility distribution over N is a function π : XN → [0, 1] with
max {π(a) : a ∈ XN} = 1. Then Π(A) = max x∈A π(x) for any A ⊆ XN is
the respective possibility measure.

Given A ⊆ N, the marginal possibility distribution is defined by

πA(a) = max {π(a,b) : b ∈ XN\A} .

The above concept is a counterpart of the concept of a probability density;
the main point is that the operation of summation is replaced by the
operation of maximization.
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CI in possibility theory I

There is a bunch of different CI concepts introduced in this framework.

The following one was pinpointed by Shenoy (1994) in his work on
valuation-based systems.

Definition (multiplicative possibilistic CI)

Given a possibility distribution π : XN → [0, 1] and a triplet 〈A,B|C 〉 of
pairwise disjoint subsets of N we write A ⊥⊥ B |C [π] if

πC (c) · πABC (a,b, c) = πAC (a, c) · πBC (b, c) .

for any a ∈ XA, b ∈ XB and c ∈ XC .

The induced formal independence model is always a semigraphoid.

This class of possibilistic semi-graphoids involves semi-graphoids induced
by relational databases and by Spohn’s disbelief functions; use the
transformation π(x) := exp−κ(x) for x ∈ XN .
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CI in possibility theory II

A lot of papers in possibility theory was devoted to the ways to introduce
various concepts of conditional possibilistic densities and to define the
concept of (conditional) independence on basis of that.

For example, Fonck (1994) combined Zadeh’s conditioning rule in which
πA|C = πAC with miminization aggregation operation, which lead to the
concept of conditional non-interactivity of A and B given C :

πABC (a,b, c) = min {πAC (a, c), πBC (b, c) }

for any a ∈ XA, b ∈ XB and c ∈ XC .

Vejnarová (2000) made an overview of those various conditioning concepts
and offered a unifying point using a measure-theoretical approach. In this
approach, every continuous triangular norm defines the respective
conditioning operation and a concept of CI in possibilitic framework.

Every possibilistic CI concept defined through such triangular norm then
leads to semi-graphoids.

M. Studený (Prague) CI concept in uncertainty calculi September 22, 2016 40 / 46



Dempster-Shafer theory of evidence I
This is one of most popular approaches to deal with uncertain knowledge
in AI. It offers a far-reaching generalization of the probabilistic approach.

There is even a special regular conference on belief functions!

A. P. Dempster (1967). Upper and lower probabilities induced by a
multivalued mapping. Annals of Mathematical Statistics 11, 325-339.

G. Shafer (1976). A Mathematical Theory of Evidence. Princeton Univerity
Press, Princeton.

Belief functions are defined by means the following elementary concept.

Definition (basic probability assignment)

A basic probability assignment (BPA) over N is a function
m : P(N)→ [0,∞] satisfying∑

{m(D) : D ⊆ XN} = 1 and m(∅) = 0 .

M. Studený (Prague) CI concept in uncertainty calculi September 22, 2016 41 / 46



Dempster-Shafer theory of evidence II
Shenoy (1994) introduced the concept of CI also within this framework.
Two further concepts needed to recall his definition.

Definition (marginal BPA)

Given a BPA m : P(N)→ [0,∞] over N and A ⊆ N the respective
marginal BPA is defined as follows

mA(A) =
∑
{m(D) : D ⊆ XN & DA = A } for A ⊆ XA ,

where DA denotes the database projection (= marginalization).

Definition (commonality function)

Given a BPA mA : P(A)→ [0,∞] over A ⊆ N the respective commonality
function Qm

A is defined by means of superset summing:

Qm
A (E) =

∑
{mA(A) : E ⊆ A ⊆ XA } for E ⊆ XA .
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CI in DS theory of evidence

This is how Shenoy (1994) introduced the concept of CI in DS theory.

Definition (commonalistic CI)

Given a BPA m : P(N)→ [0,∞] over N and a triplet 〈A,B|C 〉 of pairwise
disjoint subsets of N we write A ⊥⊥ B |C [Qm] if

Qm
C (EC ) · Qm

ABC (E) = Qm
AC (EAC ) · Qm

BC (EBC ) for every E ⊆ XABC .

Note that in the unconditional case (C = ∅) this coincides the the
definition proposed (independently) by de Campos and Huete (1993).

One can observe that this CI concept generalizes the CI concept
introduced for database relations and probability distributions.

On the other hand, neither of two possibilistic CI concepts is generalized
by the commonalistic CI in the DS theory (provided a standard embedding
of possibility distributions into DS frame is considered).

M. Studený (Prague) CI concept in uncertainty calculi September 22, 2016 43 / 46



Inconsistence with marginalization

Nevertheless, commonalistic CI has one disadvantage in comparison with
standard probabilistic CI, which was mentioned in (Studený, 1993) and
also discussed by Ben Yaghlane, P. Smets and K. Mellouli (2002).

M. Studený (1993). Formal properties of conditional independence in
different calculi of AI. In Symbolic and Quantitative Approaches to
Reasoning and Uncertainty, LNCS 747, Springer, Berlin, pp. 341-348.

B. Ben Yaghlane, P. Smets, K. Mellouli (2002). Belief function independence
II. International Journal of Approximate Reasoning 31, 31-75.

The problem with commonalistic CI is that it is not consistent with
marginalization in the sense that

BPAs m1 over AC and m2 over BC may exist such m1
C = m2

C ,

but no BPA m over ABC exists such that
mAC = m1, mBC = m2 and A ⊥⊥ B |C [Qm].
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Consistence with marginalization
A solution to the problem of inconsistency of CI definition with
marginalization was suggested by Jiroušek and Vejnarová (2011).

R. Jiroušek and J. Vejnarová (2011). Compositional models and conditional
independence in evidence theory. International Journal of Approximate
Reasoning 52, 316-334.

They proposed a modified definition of a CI concept in DS theory which
removes the above mentioned disadvantage.

Definition (BPA-listic CI)

Given a BPA m : P(N)→ [0,∞] over N and a triplet 〈A,B|C 〉 of pairwise
disjoint subsets of N we write A ⊥⊥ B |C [m] if

mC (DC ) ·mABC (DABC ) = mAC (DAC ) ·mBC (DBC )

for every D ⊆ XABC such that D = DAC ./ DBC and
m(E) = 0 for any other E ⊆ XABC .

M. Studený (Prague) CI concept in uncertainty calculi September 22, 2016 45 / 46



Conclusions

The concept of CI has been introduced and became the topic of research
interest in several areas of AI. The shared phenomenon of those CI
concepts is the conditional irrelevance interpretation.

In the basic probabilistic framework, there is only one concept of stochastic
CI with several equivalent definitions. The analogues of these definitions in
other uncertainty calculi however leads to different CI concepts.

There are other frameworks, besides the calculi mentioned in the talk, in
which a concept analogous to CI was introduced. Let us mention the
epistemic irrelevance studied in the context of imprecise probabilities
(Cozman, 2005) and the cs-independence coming from de Finetti’s
conditional-event approach (Vantaggi, 2002).

Most of the CI concepts mentioned in the talk exhibit the semi-graphoid
properties. The abstract mathematical concept of a semi-graphoid,
respectively of a separoid, has a potential to enrich the lattice theory.
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